skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shroyer, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article highlights efforts across four US federal funding agencies (National Science Foundation, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and Office of Naval Research), each with differing, yet complementary, priorities and approaches to increasing and retaining diverse talent in ocean science education and workforce development. To understand the success and impact of our endeavors, we call attention to the need for meaningful evaluation of supported programs, which requires collecting and analyzing robust demographic data. Finally, we underscore the important role of federal agencies working alongside professional societies, national boards, and academic institutions in effecting cultural change and creating environments where the talents of all ocean sciences students, researchers, practitioners, and faculty can be fully recognized and supported. 
    more » « less
  2. Abstract In low winds (≲2 m s −1 ), diurnal warm layers form but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (≳8ms −1 ), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s −1 , the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 10:00 and 16:00 local time (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = 1/4 threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h −1 ) that mixing is not expected even though Ri < 1/4. This changes around 16:00–17:00. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order of magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise. 
    more » « less
  3. Abstract. Over the past decade, our understanding of the IndianOcean has advanced through concerted efforts toward measuring the oceancirculation and air–sea exchanges, detecting changes in water masses, andlinking physical processes to ecologically important variables. Newcirculation pathways and mechanisms have been discovered that controlatmospheric and oceanic mean state and variability. This review bringstogether new understanding of the ocean–atmosphere system in the IndianOcean since the last comprehensive review, describing the Indian Oceancirculation patterns, air–sea interactions, and climate variability.Coordinated international focus on the Indian Ocean has motivated theapplication of new technologies to deliver higher-resolution observationsand models of Indian Ocean processes. As a result we are discovering theimportance of small-scale processes in setting the large-scale gradients andcirculation, interactions between physical and biogeochemical processes,interactions between boundary currents and the interior, and interactions between thesurface and the deep ocean. A newly discovered regional climate mode in thesoutheast Indian Ocean, the Ningaloo Niño, has instigated more regionalair–sea coupling and marine heatwave research in the global oceans. In thelast decade, we have seen rapid warming of the Indian Ocean overlaid withextremes in the form of marine heatwaves. These events have motivatedstudies that have delivered new insight into the variability in ocean heatcontent and exchanges in the Indian Ocean and have highlighted the criticalrole of the Indian Ocean as a clearing house for anthropogenic heat. Thissynthesis paper reviews the advances in these areas in the last decade. 
    more » « less
  4. Abstract Multiyear turbulence measurements from oceanographic moorings in equatorial Atlantic and Pacific cold tongues reveal similarities in deep cycle turbulence (DCT) beneath the mixed layer (ML) and above the Equatorial Undercurrent (EUC) core. Diurnal composites of turbulence kinetic energy dissipation rate,ϵ, clearly show the diurnal cycles of turbulence beneath the ML in both cold tongues. Despite differences in surface forcing, EUC strength and core depth DCT occurs, and is consistent in amplitude and timing, at all three sites. Time‐mean values ofϵat 30 m depth are nearly identical at all three sites. Variations of averaged values ofϵin the deep cycle layer below 30 m range to a factor of 10 between sites. A proposed scaling in depth that isolates the deep cycle layers and ofϵby the product of wind stress and current shear collapses vertical profiles at all sites to within a factor of 2. 
    more » « less